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ABSTRACT

The propagation of infinite trains of symmetric harmonic waves
traveling in infinitely long, right circular cylindrical shells is investigated
on the basis of the three-dimensional theory of elasticity. The shells are
assumed made of three concentric, transversely isotropic cylinders, each
of different materials, bonded perfectly at their interfaces. The frequency
equation is established by representing the displacement field in each
cylinder in terms of potential functions and satisfying the Navier equations
of motion and the boundary and interface conditions of the cylinder.

The frequency equation has been programmed for numerical evaluation
on an IBM 7044/7094 DCS computer, and the influence of the mechanical

properties of the layers on the frequencies of the first few modes is investigated.
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LIST OF SYMBOLS

Cylindrical coordinate

Non-dimensionalyzed radia! coordinate
Radii of the shell layers (see fig. 1)
Nondimentionalyzed Radii of the shell layers
Thickness of ith layer

displacement of components in the r and 2
respectively

Component of strain, defined in eq. [1].
Component of stree defined in Eq. [1].
density

Elastic constants

Nondimensional elastic constants
Wavenumber in the axial direction
non-dimensionalized frequency

circular frequency

non-dimensionalized wavenumber
Time

""velocities"

nondimensional velocity ratios
radial wave numbers (sce equation [8])

sce equations [19] and [20]

zero order Bessel function of the first
or sccond kind respectively
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INTRODUCTION

The frequency equation for harmonic waves traveling in traction-free
infinitely long, isotropic circular cylindrical shells has been established
on the basis of the three-dimensional theory of elasticity and has been
evaluated numerically by Gazis (4)'and Greenspon (5). More recently,
Mirsky investigated the propagation of harmonic waves in circular cylindrical
shells made of transversely isotropic and of orthotropic matericals (9) (10).
The increasing demand for structural components of acrospace vehicles
having a high strength to weight ratio and being capable of withstanding
high temperatures, has resulted in extensive use of multi-layered shells
and in considerable interest in the propagation of harmonic waves in such
shells. Armen3kas (1) (2) presented a unified treatment, on the basis of
the theory of elasticity, for harmonic waves of an arbitrary number of
cicumferential nodes traveling in two layered isotropic shells. Keck
and Armendkas (7) investigated the propagation of harmonic axisymmetric
waves in sandwich isotropic shells. Moreover, a number of approximate
theories for two and three layered shells were established (3) (6) (11).
In this investigation, the frequency equation for propagation of
trains of axisymmetric nontorsional harmonic waves in infinitely long

shells, made of three concentric cylinders of different transversely

1 .
Numerals in parentheses refer to References at the end of the report
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isotropic materials, is derived on the basis of the linear theory of
elasticity. It is shown that as in the case of isotropic shells, for
waves having infinite axial wave length, the frequency equation
degenerates into two independent equations for uncoupled longitudinal
shear and uncoupled radial motion.

The frequency equation has been programmed for numerical
evaluation on an IBM 7044/7094 DCS computer, and the influence of the
mechanical properties on the frequencies of the first few modes

is investigated.




SOLUTIONS OF THE EQUATIONS OF MOTION

In the ensuing derivations, the following notation for the components
of stress and stain will be used

T,.,%17 1,,%1 =1

11771 T22%%2 T337T3r T3t 3175 T
2 2 2e

& (1]

ell-el, 822'22. 233'23, e23-ea, 831'95, 12'96 .

In terms of this notation, Hooke's law for a general anistropic body
may be written as

- cijej (i, §=1,2, ..., 6). (2]

For a transversely isotropic body, in particular, these relations

reduce to
1T T C% tC1sty
12 = clze1 + clle2 + c13e3, [3]
13 = cnel + c13e2 + c33e3,
%" c44e4' Ts ™ C4450 Tg ™ CgeCp !
where

= !} -
66 = (1) T )¢

The assumption that the strain energy density is a positive definite
quadratic function of the components of strain imposes the following
restrictions on the elastic constants

>0, ¢ >0, ¢ >0
‘11 ' 733 YA ’

2 2 2
12 >0, ¢ c -c

11 33 " €13 >0 (4]

€11

2
c11 c33 + c12 c33 - 2c13 > 0.




Equations (3] reduce to those for an isotropic body by emplorying the
following relations between the elastic constants
C33 " €130 €12 C130 S44 " Cep"
The components of stress may be obtained in terms of the components
of displacement by substituting the strain-diiplacement relations into the
coustituative equations [3]. These, in turn, may be substituted into the

stress equations of motion to obtain the following displacement equations

of motion
c,,(u + u /r-u/r2)+c u /r2+cu +
11 'r,rr r,r r 66 r,00 b4'r,z2z
(c. 4+ c . )u /r = (c,, + ¢, )u /r2 + (c._+c )u = u
60 ¥ €12”%, ro 66 * ©11”Y%,6 13 44’z rz T Yy

2 2
(c + c%)ur re/r + (c11 + c66)ur.e/r + c66(ue,n- + ue.r/r ue/r )

12 ’
2 .
+ + =
* e Ye,00’T F 4,2zt (C13 F 4l Uz 02/F T PYer
+
(c13 * CM) (ur.rz * ur.z/r ue."/r) * c13uz,zz *
c,, (u +u J/r+u /rz)-o;.
44 z,rr z,r z,06 2

Here p is mass density per unit volume; subscripts preceeded by a
comma denote differentiation with respect to the space coordinates. The
dot indicates diffcrentiation with respect to time. It can be shown (8) that
for axisymmetric motion, Eqs. [5] arc satisfied by a displacement ficld

of the following form

ur = (c13 + c“‘)g(r)'r cos(kz - ut), 6

(5}
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|
1 (e w2 o) + KRR J k
u, = "1 ¢o(r) + C—:I - c44) ¢(r)] sin (kz - wt), [6 cont]
where the potential function ¢(r) must satisfy the equation
2 2 2 2
(Vi +9p) (V1 +q7) ¢(r) = 0. (7]
Here |
Vzn_d.;+-];_d_-'
1 dr r dr

and w and k are the frequency and the axial wave number of tne wave,

respectively. The radial wave numbers p and q are given by

2
P k2
2'———[Atv)A§-B]. (8]
q 2¢11%
wnere
A= ( Can) + ¢ (m~- ) + ( + c )2
€11°7 7 G337 T C N T Cu’ T 13 T S (9]
B= 4c11 caa(m - c33) (m - caa) A
and
me pwzlkz.

The plus sign in equation [7] refers to p2. Notice, when the radicand
Az - B is negative, that the radial wave numbers p and q become complex. Thus
for a certain range of the values of the elastic constants there is a range
of values of real m for which the radial wave numbers p and q become complex.
In the case of isotropic elastic shells, the radial wave numbers do not
assume complex values for any real value of m. Thus, it seems appropriate

to classifyv transversely isotropic materials as (a) less anisotropic if

their mechanical properties are such that p and q do not become complex for

any value of m, (b) more anisotropic if their mechanical properties are such

that p and q may become complex for a certain range of m.




The operators in equation (7] are Bessel operators and, conse-
quently, their solution is given in terms of the zero order Bessel functions
of the first and second kind with real, complex or imaginary arguments,
depending on whether p and q are real, complex or imaginary. Therefore
in order to specify the real solutions for ¢, and the displacement and stress
fields, it is necessary to establish the range of the material properties
and the range of values of the wave parameters (positive values of w and ﬁ)
for which p, q are real, imaginary or complex.

The radicand Az - B of equation (8] vanishes if m satisfies the equation
2

- - - + 2
m, ) (cllc33 c44 )(c11 caa) (c11 c“.)(c13 + caé)
&
m
1
(c11 - ¢,,)
44
2(c13 + c44) N [10]
+ &
2 Ven ey Llepgteg) = ey meg)legy -l -
For ordinary engineering materials, it may be assumed that c33 > c44' On
this basis it can be shown that the radicand AZ - B cannot vanish for values
of m greater than Chye Thus, for a given material, the radicand Az - B

becomes negative for values of m satisfying

ml <m< mz £ c44 if m > o,
0smc<m, ¢ céé if m; < 0.
If the inequality, Az - B <0, is solved for <1’ the following inequality
results
[c13 + c44) - /c“(c44 = m)]2 [(c13 + céé) + /°44(°44 - m)] (12]
< <
(c - ® £ ent (cpy - W




The cross-hatched region in Fig. | represents the locus of the values
of m and 1 satisfying this inequality. Note, that when m = 0, inequality

[12] reduces to

2
(cy, + 2¢c,,)

3 ]

€33 €33

whereas, whenm = C44° inequality [ 12] yields

CZ
1

2
< (cl3+c44) . [14]

€33°C44

€11

The value of m corresponding to the maximum value of 1 for
which the radicant A2 - B vanishes, can be obtained by setting the derivative

of tll with respect to m (see fig. 1) equal to zero.

1
ae),) d ([°13+°44+[°44‘°44‘m”z]

= \ = 0. [15]
dm dm 633 -m
This results in
2
. (¢33 = Cqyq)
m = c l - ,
44 (c,,+tc,,)
for rll max 13 44
and _ ‘ [16]
2
(cy, +¢,4)
_ 13 44
@) max = 44t .
€33 " “44

From equation [10] it can be seen that the maximum value of 'C'“
is also obtained whenm = m, = m,. From the aforegoing discussion we

may conclude that if the elastic constants of a material satisfy the relation

2
(c,,+ c,,)
13 44
c112c44+ ———-c , [14]

€33 ~ ‘a4
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the radicant AZ - B is positive for all values of m and, consequently, the
radial wave numbers p and q do not become complex for any values of m.
In this case, the material has been classified as less anisotropic. If,
however, the elastic constants of a material do not satisfy inequality [ 17],
then for a certain range of values of m the radicant Az - B will be negative
and p and q will be complex. In this case, the material has been classified
as more anisotropic. Referring to equation [8], it can be seen that pz
is the conjugate of qz. Consequently, two pairs of complex values of p
and q are found. It can be shown that any two of the four roots satisfy
the requirements of the equations of motion. The value of q used in this
analysis is the negative complex conjugate of p.

From Eqgs. [9], it can be deduced that for m > C33 the radial wave
numbers p and q are real, while for Cy3 >m > Cqq' P is real and q is
imaginary. Finally, for C4q > m, the non-complex values of p and q are

" both real if A > 0 or both imaginary if A < 0. The parameter A vanishes if

2 2
113t Caq legatcg) | [18]

€11t C44

This relation is plotted in Fig. 1. For values of m less than m,, A is
negative.
It can be seen, that for less anisotropic materials and for more

anisotropic materials with elastic constants satisfying the relation




the parameter A is negative for all values of m smaller than Céé' For

these materials, for c > m, the non-complex values of p and q are

44
imaginary. For more anisotropic materials with elastic constants

2 -
satisfying the relation 1 < (c13 + c44) /(c33 céé)' the parameter A

is positive for c44 >m > mz. Therefore, in this range, p and q are both
real. On the basis of the foregoing discussion, the radial wave numbers
P and q may be written in the following form

p= ()" ka Q= (c)? kB, (19)

For less anisotropic materials and for more anisotropic materials, if

m<m orm?> mz, the parameters a and 8 are given by

1
i
a}. 1 As/ a2 -8 . [20]

2
] c11 c44

and alternatively, for more anisotropic materials with m1 <m < mz (here m

replaced by 0 if m, < 0) @ and 3 are taken as

a
}- %A‘ (t cos 8 + 1 sin 8) , [21]
B8
with
¥- @ - cpy) == (m- ) | » [22]
11 €44
and
VB - Az
1 -1
6 = tan o

2 A |
For materials with c11 > (cl3

ei (i=1,2) are assigned the values

2
+c [(c =-1c¢, ), the sign factors
o 1337 S <

(1 if m > ¢

-1 if c >m 3m
€, = ¢ 44 2 [23]
1l if m2 >m>m

-1 if

lis
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(1 if m> c33
-1 1f ¢ >m3m
€, = 1 33 2 [23]
1 if m, >m>m
2
-1 1if m, >m 2 G,
2 .
< - -
whereas, for materials with 11 (cl3 + c“) / (c33 c“). the factors € (i=1, 2)

assume the values

€ "
-1 1if m, :m >0,
and [24)
(1 if >
m c33
-1 if >m >
. -{ c33 m c““
2
1l if c44 >m > m1
-1 if mozm3 o,

The solution for ¢ can now be written as

o(r) = —E — a) 2 (kar) + B

W. (kar) +
13 * 44 °

1

[25]

+ A, 2 (kfr) + B
o

) wo (kB8r) .

2

Here, Z and wo are regular or modified Bessel functions of the first and
o

second kind, respectively, depending on whether ci is 1 or -1.

DERIVATION OF THE FREQUENCY EQUATION

*

Consider a shell made of three concentric cylinders of different materials
perfectly bonded at the interfaces. The solution obtained in the previous
section may be applied to each layer of the shell. The material properties
of the layers will be identified with the superscripts "(1)", "(2)", and

"(3)" for the inner, middle and outer layers, respectively (see Fig. 2).
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For convenience, the following non-dimensionalized parameters are

introduced.
?, Z, F, E, d = (r, a, b, c, d)-ﬁzz) , = kh(z)/n .
@/ @ @ - . =
il wh /D /n /c;4 ’ uj uj h(z) (j =r, z),
(1) (1) (1)
OISV g G2 PO I ¥
1 c(2)' 2 CIZ)’ 3 e (2
44 44 44
. (1) 4y < (i)
(1)_ S4q , -
d ~&) dg :l%IY . (1 =1,2,3) [26]
44 A
(1) _ . )
4 i 11 12 §(i) _ Pk
6 )] ’ 5(2)

44

I h
The ratios [c (1)/ o(i)] and [c3§i)/ o(i)] are referred to as

'velocities" and are denoted by vs(i)and vd(lz respectively. In non-dimension-

alized form, these velocities will be taken as

A W Y4
d ,
a ‘= :ETI) and b = ;—17) s (i =1,2,3). [27]
S ]

The radial wave numbers may now be re-written in terms of the

non-dimensionalized parameters as

;(i) - / slh) 2:’:(1) ,
- i
CI R CI U,

(28]

where, for less anisotropic materials and for more anisotropic
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materials if m < ml orm > mz, the parameters g(i)and g(i)are given by
]
(1) ,
a 1 (1) X
A KU LT v
gt /2
with
(1) (1) ) { (1)
A1) dJ( ( nz - 1| + dér ”22 1 d(i) %
= i) (1) 2 (i
d4 (1) CZ d1 L, (1) d1 d4
a M 2 2 [30]
g . 43 —_ -1,
= dlm (il (D2

For''more anisotropic'' materials with m <m<m, (m1 replaced by 0 if

m_ < 0), the parameters g(i)and g(i)are given by

1
(1) X
_(1) - T (¢ cos 614 sin _q(“), [31)
B
with
z(i) - Ikﬁ(i)l,
: a(l) _ (1) 's
o) ey el [ B AT 132)

a1
The solution of the equations of motion given by equations [6] and
[25] may be applied directly to each layer of the cylinder. Thus, the

complete solution for the three-layered cylinder will contain twelve

(1) , (1)

integration constants AJ s B y, (i=1,2,3; j=1,2). These constants may be

J

evaluated by requiring the solution to satisfy the following boundary and

interface conditions of the cylinder.

(i) = (3)

=0atr=a, 1 =0atr=4d (33

fe =
(j=r,2)
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uji) - uj(1+1) atr =b if 1= 1,

[33 cont]

(1) o, (1+D)
rj rj

1 or;-zifinz.

(j=r,2).
By substitution of the components of displacement and stress into
equations [33], a set of twelve homogeneous, linear, algebraic equations are
obtained. For a non-trivial solution, the determinant of the coefficients

1)

of the Aj( and B (1) must vanish resulting in the following frequency

equation

|c13| =0 (1,3=1,2, ..., 12). [34]

The non-zero elements of the determinant are given as

c,, - 2 dam (D2 W 3 2 G W3 -
Cp =2 d6(1) cz g(l) L] (ca(l) a) - (35]
it e i
c -2 d6(1) (d;1)+ d21)) c;1) 8 V7 z, (c_q(l)Z) )
i 421’;2 =2 (dil)"in é(1)2 va O :(1;2—;2 i d;f.)) zo(cgmb.
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(1) (1) (1),,., ()= (L)-
Clq =24y (A5 +d,yeg aw (:8'a) -
(1) 2
1) 2 — 1 2 d 1Y) _
d: )2 32 (di )C:I)ﬁm + 5 — - aD, W eV,
S 2
(1),2- (1) 52
d\*¢ca (i) g
.. 4 (1), () (1§ 4 _ LD )= (1)=
C21 :(D:—d—(-l—)' (d 1 a w dS )51 ta ZI(Cg a),
5 a
a 2= (1) 2
 a 2 d 9]
N _ %4 L@ M & 1), (1)= (1)-
“2 77 T, g @Y e (2 24 e e e Ta),
5 4 a
Y W w2 4 & R M3 (1=
L D = (1) 1 4 1 1
c23 d, ;a(d1 ¢ 8 —m 5 le z (cg"""a),
a
(1) 2 4P
Cyy =74, c:(d{“e;l)ﬁ(l) 4 ())48(1) W (ce(” ¥
1° ¢
a
c3’1. c‘“1 (1= 1,2,3,4) = ¢, ,, C 4 (1 =1,2,3,4) with a replaced by b,
€3 40 C4q (1= 5:6,7,8) = Cpyv €y g (1 = 1,2,4,5) with a replaced by b

and (1) by (2),

(1) 2 (1)= 1)z
Cey == 727 a""'b 2, (za*™’b) ,
51 1 1 (35 cont ]
.. ,2 ()T (D
C52 " a "’b Wl (za"""b),
(1) _
c.. = - @V 4 q)) m:g Y, (:6 b)),

53 5 4 €2

1
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;“ . ), (1) (1)t ()5
Cog ™ - (d5 ) ¢877b Wy (cg'D),
2% N )2
LB S R ¢V (1)2 dg (1) (L)
c..= (d - — ) Z (¢a‘'"’b)
61 (1) (1) 4 2 2 2 ’
5 + da all) ¢
2 - (1) 2
£ b 2 d Q
—_——— (1) (1) (1) 4 (1) (¢
cC_ = (d. e a -+ d,; ) W (za'b)
62 (1), ,Q1) 1 1 = 2,2 4 o '
d,"'+ d, all)® ¢
1) (1)2 a{D) o 1
1 2 12 C2
a
[35 cont ]
(1) 2
- W@ (r 9 4D (1)=
C., = ¢t (d, ¢, B8 = ) W (c877b),
64 1 "2 a(1)2 42 4
5,]' c6,j (] = 5,6,7,8) = cS.i' C6’1 (i = 1,2,3,4) with (1) replaced by (2),
C7’J. CB,j (J = 5,6,7,8) = C6 g C (1 = 1,2,3,4) with b replaced by <

and (1) replaced by (2),

(4 = 9,10,11,12) = ¢, o S5y (1 = 1,2,3,4) with b replaced by

c7oj’ CB.j

c and (1) replaced by (3).
c ,C =5,6,7,8) = C , C = 1,2,3,4) with a replaced b
9,3' “10,3 (6! »6,7,8) 1, 2,1 (J »3,4) with a replaced by

< and (1) by (2).

c

9 ,4° clO,j (J =9,10,11,12) = CloJ’ CZ.j (J = 1,2,3,4) with a replaced

by c and (1) by (3).

-




C (J = 9,10,11,12) = C = 1,2,2,4) with a

11,_‘]’ Clz,j 2,] Cloj 4

- (35 cont]
replaced by d and (1) by (3).

For given material properties and shell geometry, the frequency
equation | 34] i3 a transcendental relation between the non-dimensionalized
frequency ¢ and the wave number ;. For any value of 7, the frequency
equation will yield an infinite number of values of i, each
corresponding to a different mode of wave propagation.

The frequency equation may be specialized to give the correct formu-
lation for solid rods (; = 0). In this case, the boundary conditions at
the inner surface (See Eq.[33])are omitted. Furthermore, in order for
the displacement field in layer (1) to remain finite at T = 0, it must

contain no Bessel functions of the second kind. This implies that the

constants of integration Bj(l)(j = 1,2) must vanish. Consequently, the

frequency equation for axisymmetric waves in three-layered, transversely
isotropic rods may be obtained by deleting the first and second rows and |
the second and fourth columns of equation [34].

For "more anisotropic" materials, within the range of values of u
and ¢ for which the values of p and q are complex, the frequency equation
wiil contain complex elements. Inasmuch as q is the negative complex
conjugate of p, the following relations are valid

3@ = =0t at e,

= * =
Y (@ =D oY e,

*®

*
where Jn and Yn are the complex conjugates of Jn and Y .
n
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1f the ith layer of the cylinder is''more anisotropic!' and if m is
sufficiently small so that a and B are given by equation [19], then the
four columns of Eq. [34] relating to the il layer are complex. It can
be shown, that with the exception of a constant multiplication factor,
columns (4i-n) and (4i-n+2) (n=2,3) are, element by element, complex
conjugate pairs. For instance, if layer 1 is complex (i=1l), the frequency

equation may be written as

|c c|-0, [37]

= G..G_G
gl = 1651 655 63 €4,
where C represents the last eight columns of the determinant and ij

(k=1,2,3,4) are the complex first four columns of Cjk' These may be written

cjl-cj1+1a’j3, cja-ﬁ'jl- 13’j3 ,
(j=1,2, ...,12) [38]

cjz-cj2+1ﬁ'j4, Gj‘o-CjZ-ia‘jA'

Substitution into equation [37] and expansion yields

- |¢. ¢ ¢ CT c|=0. [39]

lc J1 °j2 U313 34

sl =
Thus, the problem of evaluating the frequency equation for waves traveling

in shells made of ''more anisotropic'' materials is essentially identical to

that of evaluating the frequency equations for waves traveling in shells

made of ''less anisotropic'' materials.
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WAVES WITH INFINITELY LON« AXIAL WAVE LENGTHS

When the axial wave number vanishes, the displacement field of the

cylinder is independent of the axial coordinate. The radial wave numbers

reduce to (1)
2 2 2 d 2
1) _8 1) _ %% (1)
P, 2 and q. P, » [40]
(1) d
a 1
and the frequency determinant can be written as the product of the
following two determinants
Limit |C, | =D, D, =0, (41]
20 ij 1 2
where
Cy Cp O 0 0 0
C C c C 0 0
31 32 35 36
1 %2 %5 G O 0
Dl- 2 [42]
c C C
0 0 €5 76 79 7,10
Y Y €10,5 %0,6 ©10,9 ‘10,10
0 0 0 0 C c
11,9 11,10
and
C C 0 0 0 0
13 14
C c C 0 0
€43 44 47 48
Cs3  Cs4 Cs7 G5 0 Y
D= 43]
2 . [
0 0 Ce7  Css  C,11 Cs,12
|
. |
0 0 €97  %s  %,11 9,12
¢ g < < €12,11 ©12,12
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The equation Dl = (0 yields the cut-off frequencies of axisymmetric
longitudinal shear vibrations involving only axial displacement. In this
case, the motion is uncoupled equivoluminal, and the displacement components

are

=(1)
u = (0,
r [44]

2 - - =
(1)
ugi) - _p((:i) [ A](.j.) Jo (péi)r) + Bl YO (pc(:i)r] sin @ t.

Notice that, as in the case of isotropic shells, the motion depends
only on the elastic constants d‘;’(i:l. 2,3).

The equation D, = 0 represents plane strain extensional motion involving

2

only radial displacements

—-(1) (1) ;,(1) (1)- (1) (1)— -
u " o=q. " [A7 3 (@ 'n) +By, " ¥ (g )] cos ut.
[45]
oo,
2z
(1) (i)
This motion is independent of the elastic constants d3 and dg ° and

consequently is independent of the axial Young's moduli of the three

materials.
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NUMERICAL «NALYSIS

A computer program has been written for numerical evaluation of the
frequency equations. The program first computes the cut-off frequencies
on the basis of Eqs. [42] and [43], and utilizes them as starting values
to trace the branch curves of Eq. [34]) on the @ - ¢ plane. For each
assumed value of {, the frequency, {, is incremented by a specified amount
Al until a change in the sign of the determinant occurs. This indicates
a root between the last two values of Q. An interval halfing procedure
is then executed which brackets the root to the required (pre-set) accuracy.
Subsequently, the value of { is incremented by a pre-assigned increment
A¢ and, starting with a new value of 2, (computed from the slope of the
two previously established points on the branch) the process is repeated
and new roots are established until each branch of the frequency equation
has been traced up to a pre-assigned value of . For each tested value
of Q@ and g, the program uses the appropriate form of the frequency equation
depending on whether the radial wave numbers p and q are real, imaginary
or complex.

(2) (2)

The effect of the ratio of elastic constants céé and c11
(2)
1

/ C1§2) = 7/3) on the cut-off frequencies of the

(for

constant a ratio of ,

first few modes is illustrated in Figs. 3 through 6. In these figures, the

outside and the inside layer were chosen as Boron/Epoxy (sec Table 1).

This material is 'less anisotropic'. The results shown are valid for any
(2)

2
values of c33( ) and 13 inasmuch as the cut-off frequencies[cquations

[42] and [43]]are independent of these clastic constants. As expected, the
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frequencies of the longitudinal shear modes are independent of the elastic

(2)

constants €11 and clzz. Moreover, as can be seen from Fig. 3 and 4,

the frequency of the first longitudinal shear mode is not noticeably effected

by changes in the axial shear modulus c44(2). The frequency for this

mode is slightly larger for rods (Fig. 4) than for thick-walled shells, i.e.

H/R = 1.0 (Fig. 3). For values of H/R < 1.0 the effect of H/R on the frequency
of this mode is negligible. Thus, for thin sandwich shells the frequency of

the first longitudina! shear mode is only effected by changes in the density

ratio of the layers. This result is interesting inasmuch as this frequency

is employed in establishing the correction factor in Timoshenko-type shell

theories.
TABLE 1. - MATERIAL CONSTANTS
' 6
Material Pounds Per Square Inch (10)
2]
y(1b/in
€11 cl2 c33 c“ cl3 p(lb/in )
Aluminum 13.46 5.76 13.46 3.85 5.76 0.100
Boron/Epoxy 3.28 1.19 30.4 1.00 0.995 0.075
Composite
Beryllium 4.24 0.388 4,88 2.36 0.203 0.067
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Figure 7 shows the frequency spectrum of a sandwich shell made of
an aluminum core and fiber-reinforced composite facings made of an epoxy
matrix reinforced by unidirectional boron fibers., Figure 8 shows the
frequency spectrum of a sandwich shell made of an aluminum core and
beryllium plate facings. The mechanical properties of the layers of these
shells are given in Table 1. The aluminum is isotropic, whereas the
Boron/Epoxy composite and the beryllium are less ""anisotropic' and
"more anisotropic" respectively. The Q-{ planie may be sub-divided into
sectors by lines 2= blil, o= alll, and - Tl qqi=123;=1,2).
Throughout each sector the radial wave numb:rs p and q retain their real,
imaginary or complex character and, consequently, the form of the frequency
equation, in each sector, does not change. It can be seen that the behavior
of the frequency lines of the lowest two modes of wave propagation in
the shell having fiber-reinforced composite facings differs considerably
from those for the shell with the beryllium facings; those of the latter
cross into the region of complex p and q. The frequency lines of the
higher modes for the two shells are comparable for large wave numbers; they
appear to become parallel to the . = a(zk line. For smaller wave numbers,
within a certain range of ;, the frequency lines for the shell with fiber-
reinforced composite facings become nearly parallel to the { = b(b)c line.

This tendency is not apparent in the spectrum for the shell with the

beryllium facings.
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Fig. 7 Frequency spectrum for a shell with aluminum core and fiber-reinfor-cd
composite facings.
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